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1. FLARE ACCELERATED ION ANGULAR DISTRIBUTIONS

Comparisons of Solar Maximum Mission (SMM) observations of gamma-ray
line and neutron emission with theoretical calculations of their expected production

by flare accelerated ion interactions in the solar atmosphere have led to significant

advances in our understanding of solar flare particle acceleration and interaction,

as well as the flare process itself. These comparisons have enabled us to determine

(Hua and Lingenfelter 1987a), not only the total number and energy spectrum
of accelerated ions trapped at the Sun, but also to make the first qualitative

determination (Hua and Lingenfelter 1987b) of the ion angular distribution as
they interact in the solar atmosphere, showing that they may be highly anisotropic

with a mirroring-like distribution. These comparisons have also enabled us to make
the first direct determination (Hua and Lingenfelter 1987c) of the photospheric

3He ratio, which strongly affects the time dependence of the neutron capture line
emission.

More detailed calculations are essential, however, for an understanding of the

angular dependence of the SMM gamma ray and neutron measurements, and of

the accelerated ions that produce them. Thus we have modified our Monte Carlo
program to include in the calculations of ion trajectories the effects both of mir-

roring in converging magnetic fields and of pitch angle scattering. For ions with

various initial angular distributions at their acceleration site in the upper atmo-
sphere of the Sun, we have calculated their energy losses, pitch angle scattering,
nuclear interactions and magnetic mirroring on converging magnetic field lines in

the lower atmosphere, together with their expected neutron and gamma ray line
emission as a function of observing angle. Comparing the results of these cal-

culations with the SMM observations of gamma-ray lines from flares at different

heliocentric longitudes, we can thus determine not only the angular distribution of
the interacting ions but also the initial angular distribution of the ions at acceler-
ation and quantitatively study the effects of pitch angle scattering and mirroring

in the converging magnetic field.
In particular, we consider a magnetic flux tube model consisting of a semicir-

cular coronal portion of half-length Lc having a uniform circular cross section of

radius ac, and two straight portions parallel to a solar radius extending from the
ends of the coronal portion (at the transition region), through the chromosphere
and into the photosphere. We assume the gas to be completely ionized in the
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corona and neutral below the transition region. For the density profile below the

transition region we use a sunspot active region model (Avrett 1981) at depths

-1800 km < h < 120 km merged witl_ a photospheric model (Allen 1963) at

depths > 120 kin. Zero height is the point where the optical depth for the 500 nm

continuum radiation is unity and h - -1800 km is the location of the transition

region. Below the transition region, we take B proportional to a power 6 of the

pressure (Zweibel and Haber 1983), B(h) = Bc[P(h)/Pc] 6, while in the corona we

take the magnetic field Bc to be constant. We assume a constant coronal pressure

Pc and density no, and the pressure P(h) below the transition region is given by

the models above. The convergence parameter 6 can be calculated by specifying

the photospheric magnetic field Bp = B(h=O); thus 6 = ln(Bp/Bc)/ln(Pp/Pc),

where we take Pp --- P(h=0) = 1.S3xl05 dyne cm -2. We assume local galactic

abundances (Meyer 1985) for the ambient gas composition throughout the loop.

We assume that the acceleration takes place in the corona, primarily because

of the requirement for pitch-angle scattering by MHD turbulence for stochastic

acceleration and diffusive shock acceleration (Forman, Ramaty and Zweibel 1986).

Such turbulence could be produced by the flare energy release mechanism and could

exist in the ionized corona, but is expected to be quickly damped (Melrose 1980,

p. 27) by neutral hydrogen in the chromosphere. The energy spectrum, angular

distribution, and time profile of the accelerated particles depend on the acceleration

process. Energy spectra were considered for stochastic acceleration and shock

acceleration. There are no detailed studies of the expected angular distributions;

however, for stochastic acceleration the distribution is probably isotropic.

In the Monte-Carlo simulations, we release energetic particles in the coronal

segment with a given energy spectrum, angular distribution, time dependence,

and spatial distribution. The ions subsequently lose energy through Coulomb

interactions and are removed by nuclear interactions. We employ the guiding

center approximation to determine the particle's motion in the magnetic field.

Although in the presence of energy losses, (pxsinc=)2/B is not conserved, as long

as the force corresponding to these losses is antiparallel to the particle's direction

of motion, (1 - cos2c_)/B = constant (Northrop 1987); where, _ and p are the

particle's pitch angle and momentum. The loss processes, considered here, obey
this condition.

In addition to the effect of the converging magnetic field, the pitch angle can

also be changed by scattering on MHD turbulence. As mentioned above, such

turbulence is expected to exist in the corona but not below the transition region.

Alfven turbulence can scatter ions if 7/_ >> /3a, where 7 and c/3 are the Lorentz

factor and speed of the particle and c/3a is the Alfven speed (Melrose 1974).

This condition is easily satisfied by ions with energies greater than the gamma-ray

production thresholds.

Pitch-angle scattering is described by the diffusion coefficient D_o -- (1 -/L z)

D_, where it =- cos_. For protons resonating with Alfven turbulence with a Kol-

mogorov spectrum D_o -- 100 sec -1 [(Wo/lerg cm-3)/(B/100G)] 7-1(#_,_)2/3,

where W_ is the total energy density of the Alfven turbulence, derived from an ex-

pression by Melrose (1914) with a low wave number cutoff on the spectral density
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equal to the resonant wave number for a 10 GeV proton in a magnetic field of 100

Ca. Hence, for W_ --- 1 erg cm -3 and B --- 100 Ca, the scattering rate (defined as

D_(IL = 1)) is approximately 50 sec -l for 30 MeV protons. The value of Wa is

not known. But even this relatively low value (less than 1% of the energy density

in the ambient magnetic field) would suffice to practically isotropize the particles

in the corona, as a typical particle transit time is _ 0.5 sec. Pitch-angle scattering

will affect the time profile of the interactions primarily by scattering particles in

the corona from large to small pitch angles, thus enabling them to lose energy

faster below the transition region. As shown below, even a Wa of _ 2x10 -4 erg

cm -3 has a significant effect on the time profile of nuclear line emission. This

coronal scattering, however, will not destroy anisotropic gamma-ray production in

the converging magnetic field below the transition region.

Having made these modification to our Monte Carlo program, as we proposed,

we calculated the nuclear line production in magnetic loops by energetic ions with

various pitch angle distributions and energy spectra.

A comparison of our calculations of the time-dependent 4.438 MeV line emis-

sion with SMM measurements (Chupp et al. 1987) of the time history of the 4 -

7 MeV emission of the 1982 June 3 flare is shown in Figure 1. This time history

should be proportional to that of the 4.438 MeV time profile, as it is expected to

be dominated by nuclear deexcitation lines. In these calculations, we assumed a

loop with Lc = 103 cm, ac ---- 108 cm, n_ = 2.5x109 H cm -3, Pc = 0.16 dyne cm -z,

Bc -- 100 Ca, and convergence parameter _ = 1/5 and 1/20, and we injected the

ions isotropically at the top of the coronal loop at t -- 0, with an energy spectrum

proportional to the modified Bessel function K2 characterized by c_T = 0.03 (e.g.
Forman, Ramaty and Zweibel 1986).

As can be seen in Figure 1, the calculated the time-dependent production
rate of the 4.438 MeV line is not consistent with the measurements if there is

no pitch-angle scattering. However, if we include MHD pitch-angle scattering

(Palmer and Jokipii 1981) with a scattering mean-free path _ -- 1800Lc, which

corresponds to Wa = 2x10 -4 erg cm -3 for a Kolmogorov spectrum, the we see

that the calculated time depende'nce is in good agreement with the measurements.

This shows that scattering by even a low level of turbulence can cause a much

more rapid repopulating of the loss cone increasing the number of ions interacting

at early times and decreasing the number at late times.

Thus if the ions are accelerated stochastically with an isotropic distribution,

then MHD pitch-angle scattering in the corona is the dominant mechanism for

injecting the bulk of the ions into the denser regions of the chromosphere and

photosphere where they react rapidly and produce the impulsive gamma-ray time

profiles.

These results were presented at the meeting on "Nuclear Spectroscopy of As-

trophysical Sources" in Washington D.C. in December of 1987 and are being

published in the proceedings as part of a general review (Ramaty, Miller, Hua and

Lingenfelter 1988) of models of gamma-ray production in solar flares. Full details

of the calculations and results have been published in the Ast_'ophysica! Jourlzc=!

(Hua, Ramaty and Lingenfelter 1989). Copies of these two papers are attached.
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Figure 1. Comparison of calculated time dependences of 4.438 MeV line pro-

duction in a converging magnetic field loop with SMM measurements of 4 - 7

MeV flux from Chupp et al. (1987), showing that pitch angle scattering in the

corona is needed to account for the observed time dependent flux if the ions are

accelerated isotropically.
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2. THE 3He/H RATIO IN THE SOLAR PHOTOSPHERE

The reliable determination of the solar photospheric 3He abundance is of great

importance for our understanding of nucleosynthesis in the early universe and its
implications for cosmology, as well as for the study of the evolution of the sun.

It is also essential for determinations of the spectrum and total number of flare

accelerated ions from the SMM/GRS gamma-ray line measurements. A sensitive
measure of the 3He abundance can be made from SMM/GRS measurements of the

time-dependent rate of 2.223 MeV gamma-ray line emission, resulting from radia-

tive capture in photospheric hydrogen of neutrons produced by flare-accelerated
ions, because that rate depends strongly on the nonradiative capture by 3He.

We have made systematic Monte Carlo calculations (Hua and Lingenfelter

1987a,b,c,d,e) of this time dependence as a function of the 3He abundance and
other variables. Comparing the results of these calculations with the SMM/GRS

measurements (Prince et al. 1983) of the time dependent 2.223 MeV line emission
observed for nearly 1000 seconds from the large flare of 3 June 1982, we found

a photospheric 3He/H ratio of (2.3-t-1.2)x10 -5. This determination of the solar
3He/H ratio must still be regarded only as a preliminary one, however, because it

relies on the analysis of just one flare. Studies of additional flares are needed to
test the reliability of the determination and its sensitivity to other variables. Thus,

we are making a similar analysis of the SMM/GRS measurements of the time-

dependent 2.223 MeV flux of comparable duration (Chupp 1988) from a second
large flare, that of 24 April 1984, at a heliocentric longitude of 45°E and a latitude
of 11°S. This provides an independent measure of the aHe/H ratio and enables

us to test the reliability of the technique and to study the effects of uncertainties

in the accelerated ion energy and angular distributions, the neutron production
time dependence, and the assumed atmospheric model. These uncertainties are
also constrained by comparing other SMM/GRS measurements with the results of

related studies, which we have carried out (Hua, Ramaty and Lingenfelter 1989,

Ramaty, Miller, Hua, and Lingenfelter 1988) as a part of this investigation.
We have completed a new series of calculations of the time-dependent flux of

2.223 MeV neutron capture line emission and the ratio of the time-integrated flux,
or fluence, in the 2.223 MeV line to that in the 4.1-6.4 MeV nuclear deexcitation

band, expected as a result of the accelerated ion interactions in the solar atmo-
sphere. These have been calculated for an observing angle of 46 ° , corresponding to

that of the 24 April 1984 flare, as was previously done for an angle of 72° for the 3
June 1982 flare. These calculations were made for a range of photospheric 3He/H

ratios and accelerated ion energy spectra, assuming a Bessel function spectrum
and a mirroring distribution for the interacting ions.

The data reduction of the time-dependent gamma-ray line measurements for

this flare is presently being carried out by the SMM/GRS investigators (Forrest
1989) and we are now awaiting its completion. As soon as it is available, we

can compare the calculated time-dependent 2.223 MeV flux for this flare with the
SMM/GRS measurements to make a second determination of the 3He/H ratio. We

will make two separate best-fit comparisons of the calculations and measurements
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to determine both the 3He/H ratio and the spectral index aT. We will determine
the best-fit values of 3He/H, as a function of the assumed spectral index aT, using

.z-square tests of the fit of the'measured and expected time dependence of the
2.223 MeV flux. And we will determine the best-fit values of spectral index aT, as

a function of the assumed 3He/H, using x-square tests of the fit of the measured

and expected ratios of the 2.223 MeV to 4.1-6.4 MeV fluences. From these two
comparisons, as was done for the 3 June 1982 flare, we can then determine the

combined best-fit values of the spectral index aT and the SHe/H ratio.
These two independent determinations of the photospheric 3He/H ratio from

the 3 June 1982 and 24 April 1984 flares at different observing angles, allow us to

critically test the reliability of the technique, since we would not expect variations

in the 3He/H ratio from flare to flare. By combining the two determinations, we

obtain a better value of 3He/H with a statistical uncertainty reduced by a factor of
,/2. These two separate determinations will also enable us to study the systematic

uncertainties, associated with the ion energy and angular distributions, the neutron
production time dependence and the assumed atmospheric model.
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